
COMP 4901J Project Final Report:
One-shot Pokemon Classification

Xiang Li, Qixu Chen, Xinran Zhao
{xlide, qchenax, xzhaoar}@connect.ust.hk

Abstract

We aim to solve the Kaggle One-shot Pokemon Classifi-
cation problem where we classify pokemon images ”in the
wild” under the condition that for each class of Pokemon,
only one labeled image is given. We adapted and improved
the simple and flexible Relation Network for few-shot learn-
ing. Our network learned to learn how to embed the Poke-
mon images as well as how to compare their embeddings
based on a deep distance metric. We propose several adjust-
ments on both the embedding network and distance metric
network to enable more robust representation and metric to
be learned. With the same settings, our model out-perform
the original relation network on our task. Experiments and
an ablation study are done to show that the adaptions make
a more effective model for few-shot image classification on
Pokemon images.

1. Introduction
Deep learning based Computer Vision algorithms has

achieved great performance on image classification prob-
lems. However, it has long been a problem that these mod-
els usually require a huge amount of human labelled im-
ages. Image classification algorithms, for example, usually
require thousands of labels for each classes. Introducing
new classes would be costly in both time and efficiency,
especially when the class has only limited amount of data
(e.g. some deep sea animals). In comparison, humans could
learn thousands of object classes starting from a very young
age of life. Children show great ability in generalizing their
abilities in recognition and classification on new concepts
with only few instance given.

The problem to learn to generalize the classification to
unseen classes with only few examples given is know as
few-shot learning. One-shot learning refers to the machine
learning problem where we only have one labeled exam-
ple for training, as defined in [2]. One-shot learning keeps
gaining popularity in recent years because of its intrinsic
similarity to the human cognitive process, where the general
knowledge learned previously is transferred to the one-shot

task. Contemporary approaches working on this problem
focus on how to learn the meta knowledge of recognizing
a image hence classify different classes of images. These
works include forming good initialization [3] or good opti-
mization [10]. Another promising work, Relation Network
[13], does not require complex adaption on the optimiza-
tion strategies. It focuses on storing the meta information in
a well designed neural network.

Specifically, the Relation Network approach divide the
task into two modules: embedding module, also known as
the embedding network, and relation module, also known
as the distance metric network. The former one learns to
convert the images into hidden representations. And the re-
lation module learns a non-linear comparison function to
compute the similarity between the query image and sup-
port image(s) for a specific unseen class. Finally, the simi-
larity would be compared and the query would be classified
to the one with highest similarity score given by relation
module.

With the understandings about the pipeline, in this work,
we focus on making the Relation Network more robust
through three aspects: task-specific data argumentation, a
better embedding module and a relation module with more
information involved in each layer.

In this project, we tackle the one-shot image classifica-
tion problem on the Kaggle Pokemon images dataset [15].
Pokemon creatures are significantly different in color and
shape. They also live in different environment, which add
the difficulty of the problem. Given hundreds of Pokemons
only appear once or twice in the original cartoon, a few-
shot classification is natural for the Pokemon classification
problem. Also, Pokemon trainers are required to classify
the Pokemon creatures they met in the wild, given only a
few images collected by the Pokemon Gym. This adds the
significance of few-shot Pokemon classification task in an
empirical setting.

To solve this, we experiment and make adaptations on
the Relation Network architecture. We replace the conven-
tional CNN backbone for embedding module with a ResNet
[4], which we believe to be more capable in capturing fea-
tures. As we notice that the backgrounds of the Pokemon

1



images vary a lot. We also perform saliency detection on
the input support images and add the resulted saliency map
as an additional channel other than original RGB. Finally,
in the relation module, we concatenate the hidden represen-
tation from embedding modules to the later layers to allow
feature reusing and more direct supervision (gradient prop-
agation) to the embedding module. We also experiment on
using separated neural network for the module for query
image and support image for the unseen classes, under the
hypothesis that the embedding for query and support could
need different feature weights.

Overall our contribution is provide a robust framework
based on the existing state-of-the-art few-shot learning
method, Relation Network. The framework shows great im-
provement comparing with the baseline Relation Network
on our novel dataset aiming at classifying Pokemon. Ab-
lation study will be performed in later section to show the
worked ideas and the failed ones as well.

2. Related Work
In the one-shot classification setting, the model is given

abundant training data from the base classes, and the model
aim to classify novel classes with only one supporting la-
beled data. Much efforts have been done from different
ways to tackle with the problem with finding representative
and robust model with only a very small amount of data. In
the following, we discuss about two main categories of few-
shot learning algorithms: meta-learning based and distance
metric learning based.

2.1. Meta-learning based methods

Methods to be discussed in this section tackle the few-
shot learning problem by building a set of new mechanisms
to train the neural network to allow it learn with only lim-
ited number of labelled examples. One approach is to learn
a good initialization of the parameters of a network so that
it could learn to classify novel class by fine-tune with only
a few gradient steps [3]; [9]; [11]. Other work focus on
learning a new optimizer with memory based on LSTM or
external memory [10]; [8]. These meta learning based al-
gorithms could achieve state-of-the art results on few-shot
learning problem. But experiments also show that these
methods could not deal with the case where the base classes
and novel classes have very different domains [1].

2.2. Distance Metric Learning based methods

Methods to be discussed in this section regard the few-
shot learning problem as a problem to find the most similar
novel class for a test image. In these methods, the models
are first trained to represent the images with a hidden repre-
sentation and then compare the distance of these represen-
tations as a metric to do comparison. The distance metrics
are given as cosine similarity [14]; Euclidean distance [12];

and CNN based relation module to learn a neural network
based distance metric [13]. These methods are easier to ex-
plain and apply to different settings are few-shot learning
problem. And the Relation Network using a CNN based re-
lation module over-perform all the other. In this report, we
will implement and adapt the Relation Network to fit our
one-shot Pokemon classification problem.

3. Problem Statement
3.1. Dataset

The Kaggle dataset of RGB Pokemon images [15] in-
cludes more than 800 classes of Pokemon, each with 1 or
2 labelled support image. In addition, 3000 unseen test im-
ages are presented, as shown in Figure 1.

Figure 1. Examples of one training image and one test image in
the Pokemon dataset

Pokemon creatures vary a lot in terms of shape and color,
which contributes to the significance of this problem. Also,
particular to this dataset, the support images have white or
black background; while in the test images, Pokemon crea-
tures are put into different backgrounds, which motivates
our data preprocessing approach with saliency detection.
The saliency map detected is added as an extra channel for
the image.

3.2. One-shot Classification

Our problem setting is an instance of C-way one-shot
problem, where we have to do the classification among C
classes with only one labeled image for each class. The
training and testing for the one-shot learning problem is dif-
ferent than the regular deep learning problems. We adopted
the episodic training method proposed by [14].

The dataset was separated into meta-training classes and
meta-testing classes, each containing a number of classes
with one support image, the label of which is available to
the network, and multiple query images, whose labels are
unavailable to the network.

In each training iteration, an episode is created by ran-
domly selecting C classes from the meta-training classes
with one support image from each of the C classes acting
as the support set S = {(xi, yi)}mi=1(m = K × C). A
fraction of the remainder of the query images from those C
classes classes act as the query set Q = {(xj , yj)}nj=1. The

2



support set and the query set will be fed into our networks
and eventually produce a numeric value between 0 to 1 rep-
resenting the similarities between each pair of query image
xj and support image xi, which is called relation score. In
our C-way one-shot classification task, C relation scores ri,j
are generated between one of the test image and the support
set images and we apply softmax. We use mean-square-loss
function to train our model, and our objective function is:

φ, ϕ = argmin
φ,ϕ

m∑
i=1

n∑
j=1

(ri,j − 1(yi = yj))
2

where φ , ϕ are the set of parameters in the embedding mod-
ule and relation module of our network respectively.

Namely, we do not just use the labeled support images
to training a classifier, instead, we imitate the test time sce-
nario and input a set of support images and a set of test
images, using the support images only as reference for the
specific class and learn the meta-knowledge about classifi-
cation.

4. Technical Approach

Figure 2. Illustration of the original relation network [13] architec-
ture

We extend the idea of the relation network [13], which
is the current state-of-the-art for few-shot classification task
on various datasets. The original structure of the relation
network is shown in Figure 2. The support and test images
are first projected into an embedding space by a convolu-
tional neural network, which we refer to as the embedding
module or the embedding network. Then, the embedding
vector of each test image is concatenated pairwise with the
embedding vector of the support image, and passed through
a convolutional relation module, also known as distance
metric network, that serves as the classifier, producing the
classification result after the final softmax function. The
following adjustments were made to the network and the
complete network structure is shown in figure 4.

4.1. Separated Embedding Network

Inspired by the idea to use different neural network for
heterogeneous input, here we also want to use two differ-
ent instances of the embedding network for the support im-
age embedding and query image embedding. We hypoth-
esize that a good embedding for support and query could
show different focus. In terms of data, the support images
have blank backgrounds while the query images have di-
verse backgrounds. In term of the usage of the embedding,
a good embedding of support image should be representa-
tive and more regularized, while a good embedding of test
image should show as much feature and uniqueness as pos-
sible.

4.2. Saliency detection

The background varies drastically in different test im-
ages. Since the relation network essentially performs a pair-
wise similarity comparison, the background clutter could
potentially affect the classification accuracy. Therefore,
we perform saliency detection on the test images to ob-
tain the foreground object. The pre-trained saliency detec-
tion model outputs the class-agnostic foreground mask, re-
quiring no mask label from our dataset. The output of the
saliency detection is illustrated in Figure 3.

Figure 3. Example of the original image, saliency mask, and the
output foreground image

We adopted a saliency detection model based on [5]. We
used the pre-trained weights as a transfer learning approach
for detecting the foreground Pokemon in the images. The
result is visually feasible for test images with simple back-
ground or the test images where the contrast between the
Pokemon and the background is strong. However when the
Pokemon blend in with the background the model produces
wrong detection results, sometimes completely missing the
Pokemon.

In order to alleviate the adverse effect of the saliency de-
tection’s incorrect output, we do not simply extract the fore-
ground and feed it to the model. Instead, we concatenate the

3



saliency map channel-wise to the original input image. In
this way, the network could learn to use the information in
the saliency map without compromising the original image.
Concatenating the output foreground image instead of the
saliency map, or feeding in the foreground image directly
are also tried, but they were not chosen as the final approach
because they produce worse classification accuracy.

4.3. Cross Layer Linkage

In the ResNet Module [4], the cross layer linkage, or the
addition of previous layers on later layers could show two
kinds of benefits. First, the loss would be easier to be propa-
gated to the early layers. Second, the intermediate informa-
tion from former layer could also be useful for later predic-
tion. In our problem, though we do not suffer from vanish-
ing gradients, links between the embedding module and the
relation module are hypothesized to be beneficial for similar
reasons. First, the loss information might be easier to reach
initial layers, so that the embedding would perform more
task-specifically, i.e. more focus on create a embedding for
better object classification. Second, direct embedding re-
sults could also be useful for further layer in the relation
module. So instead of using the hidden representation pro-
vided by the embedding module only on the first layer of
relation module, we could keep the hidden layer to restore
as much information as possible for the later classification.

More specifically, we first pool the hidden representation
from embedding module to different size suiting the size of
the layers in the relation module. We then concatenate these
pooled embedding of the images to each layer of the rela-
tion module to ensure that the gradient could be backpro-
pogated into the embedding module directly on each stage
and the embedding layer could be considered, without too
many interference in each layer of the prediction in the re-
lation module.

4.4. Choice of Depth of the Embedding Module

Relation Network provides us a simple and flexible
framework for few-shot classification. Since the ultimate
goal is to find the similarity between the images, it is crucial
that how much information is restored during the conver-
sion from the original image space to the embedding space.
To capture a good representation of the image suitable for
the final classification, the choice of embedding module is
important. The choices could be made from the variations
of architectures as well as the complexity or depth of the ar-
chitecture. The choice should be task specific since the parts
that make the difference between different classes vary from
task to task. For example, for small input and easy tasks, the
embedding module should not be too deep since direct in-
formation could be lost. This motivates us to experiment on
the architecture and depth of the embedding module.

Specifically, we tried ResNet-18, ResNet-50, Resnet-101

and DenseNet as a replacement of the original shallow Con-
volutional Neural Network. These more sophisticated net-
work backbones are believed to show higher efficiency in
prediction and gradient back-propagation. The result of
these experiments is that ResNet-18 is the best choice for
our task. This indicates that for our task the features should
be more direct and simple.

5. Experiments and Results
5.1. Ablation Study

To better understand our final model and examine the ef-
fect of each adjustments, we performed an ablation study
for it on the Pokemon one-shot dataset[15]. The meta train-
test split was 3:1 with 600 classes of Pokemon images for
meta-training and 200 classes for meta-testing. In meta-
training, all the networks are trained for 50000 random
selected episodes from the meta-training set, each with 5
classes and 10 images(1 support image and 1 query image
for each class), and all models have converged. The models
were trained using the atom optimizer with learning rate 1e-
3 and the learning rate is halved every 10000 episodes. In
meta-testing, we randomly select 100 episodes in the meta-
test set to get an average classification accuracy. We repeat
the meta-testing for 10 times to get a further averaged accu-
racy, which is reported in Table 1.

Method Average Accuracy
Baseline 55.60%
Fine-tuned baseline 75.04%
Split encoder 70.18%
Saliency 73.78%
Concatenation 75.22%
Resnet-18 encoder 75.50%
Final model 77.71%

Table 1. Ablation study of our Pokemon classification network in
5-way 1-shot settings

We directly adapted the Relation Network as is as
our baseline. Since the baseline method is designed for
the Omniglot dataset[7], where each image is a 28 × 28
monochrome image, some adjustment needed to be made
before it is suitable for our task. We changed the input di-
mension to 224×224 in RGB and added convolution blocks
to compensate for the increase in input dimension. The re-
sult is presented as ”Fine-tuned baseline” in Table 1 and it
is much improved compared to the original baseline.

The result of using different network for the encoding of
the support and query images is presented in the table as
”Split encoder”. The overall performance suffered, poten-
tially suggesting that not sharing encoder weights for sup-
port and query images could make the support and query
image be embedded into different spaces and increase the

4



Figure 4. Illustration of the overall architecture

difficulty of the similarity comparison of the distance met-
ric network.

The result of adding the saliency map channel is pre-
sented as ”Saliency”. It was observed that the network
could make use of the information in the saliency map, how-
ever, since the saliency detection did not always accurately
find the Pokemon, it could mislead the network sometimes.
In the experiments, we could observe that using saliency
detection increase the variance of meta-testing, suggesting
that sometimes saliency detection helped and sometimes it
had an adverse effect on the classification. After averag-
ing, the overall result dropped as compared to the fine-tuned
baseline.

The result of concatenating the pooled embedding vector
to each stage of the distance metric network is presented
as ”Concatenation”. The averaged result slightly improved,
which may show that the distance metric network is learned
better when the original embedding vectors are available to
all different stages.

The result of changing the encoder network backbone is
presented as ”Resnet-18 encoder”. Different backbones was
tried including deeper Resnet[4] and Densenet[6]. How-
ever, the Resnet-18 performed the best. The reason might
be that the embedding learned by the deeper network is too
complex for the simple classification task, and may provide
extra noise and confusion to the distance metric network.

Our final model is based on the ”Fine-tuned baseline”
and included ”Saliency”, ”Concatenation” and ”Resnet-18
encoder”. The ”split encoder” was discard due to its nega-
tive effect to the results. Our final model achieved a 2.67%
improvement on the already very high fine-tuned baseline.
Although the individual adjustments did not increase the
accuracy by a large margin, they achieved a much larger

improvement when combined together, this may show that
the Resnet-18 could make better use of the information in
saliency detection, and such a better embedding vector is
reinforced at every stage of the distance metric network be-
cause of the concatenation.

5.2. Failure Case

We have also extracted and examined the failure cases of
our network.

Figure 5. Failure cases. Left images are the correct support images,
middle are the support images wrongly classified to, and the right
are the query images

There are 2 main reasons for the classification failures.
Firstly, some cases could be inherently difficult. The query
image could visually similar to multiple support images,
which is shown in the first row of Figure 5. However, this
is still better than the query image being visually different
from all of the support images. Secondly, the saliency de-
tection could make mistakes. In the example on the second

5



row of Figure 5, the image was wrongly classified because
of the false positive in the saliency detection. There were
also cases before the saliency detection is added, where the
classification is misguided by the background objects, but
those cases are very difficult to find after the saliency detec-
tion is adopted.

6. Future Work
In the future, we could hand-craft some features and con-

catenate them into the embedding vector to provide clearer
information to the distance metric network for comparing
the similarity between two images. We could also improve
the performance by collecting more support images and av-
eraging their embedding vectors, although this is different
from our one-shot classification task.

Also, considering currently the saliency detection some-
times makes mistake, one future improvement is that we
could manually add segmentation mask label to the query
images and train(or fine-tune) the saliency detection net-
work as we train the relation network. Then we could obtain
a task-specific saliency detection network that could hope-
fully perform better in the domain of pokemon images.

Further developing this idea, when training the saliency
detection network on the domain of Pokemon images,
we could provide the corresponding support image to the
saliency detection network as extra information. This is
very similar to a semantic segmentation task guided by a
few images, i.e. few shot semantic segmentation. In the
future, we could consider adding relation network to a se-
mantic segmentation network, and solve the task of few-
shot semantic segmentation on the Pokemon dataset with
segmentation mask label.

7. Conclusion
In conclusion, we clearly defined the one-shot Pokemon

classification problem and got a comprehensive understand-
ing on our dataset. Based on the the idea of Relation Net-
work [13], we proposed adjustments and augmentation to
the network structure and the dataset to enhance the per-
formance, including the saliency detection, the integration
of ResNet block, the separated encoder network and the
multi-stage concatenation of embedding vector to the dis-
tance metric network. We carried out extensive experiments
and performed an ablation study, also examining the failure
cases of the network. Finally, we propose the future im-
provements and a new task on our dataset.

During the project, we have learned a lot about one-shot
learning and deep learning in general. Firstly, one-shot
learning is hard. If the one support is not representative
enough of all the images(or entities) in the class, it is very
difficult to proceed to make the classification dicision. An-
other thing we have learned is that, for a convolution neural

network, deeper is not always better. The performance is
dependent on the input images and the specific tasks. Also,
although certain information has been present(e.g. saliency,
embedding vector), instead of hoping that the network could
learn these information by itself, it could be beneficial to ex-
plicitly provide these information to the network, for exam-
ple, when we concat the saliency map to the input and con-
cat the embedding vector to multiple stages of the distance
metric network. Finally, in the relation network framework,
a good result is the combination of a good embedding and
a good distance metric. Therefore, we could improve the
performance by improving the embedding network, chang-
ing its structure and enhancing its input, while also improv-
ing the distance metric network, reinforcing the embedding
vector at multiple stage of the similarity comparison.

References
[1] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B.

Huang. A closer look at few-shot classification. CoRR,
abs/1904.04232, 2019. 2

[2] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of
object categories. IEEE Trans. Pattern Anal. Mach. Intell.,
28(4):594–611, Apr. 2006. 1

[3] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic
meta-learning, 2018. 1, 2

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015. 1, 4, 5

[5] Q. Hou, M.-M. Cheng, X.-W. Hu, A. Borji, Z. Tu, and P. Torr.
Deeply supervised salient object detection with short con-
nections. 2016. 3

[6] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks, 2016. 5

[7] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-
level concept learning through probabilistic program induc-
tion. Science, 350(6266):1332–1338, 2015. 4

[8] T. Munkhdalai and H. Yu. Meta networks, 2017. 2
[9] A. Nichol, J. Achiam, and J. Schulman. On first-order meta-

learning algorithms, 2018. 2
[10] S. Ravi and H. Larochelle. Optimization as a model for few-

shot learning. In In International Conference on Learning
Representations (ICLR), 2017. 1, 2

[11] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu,
S. Osindero, and R. Hadsell. Meta-learning with latent em-
bedding optimization, 2018. 2

[12] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks
for few-shot learning, 2017. 2

[13] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and
T. M. Hospedales. Learning to compare: Relation network
for few-shot learning, 2017. 1, 2, 3, 6

[14] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and
D. Wierstra. Matching networks for one shot learning, 2016.
2

[15] A. Yin. One-shot-pokemon images: Colorful and fun
dataset for one shot learning problem, gotta recognize them
all. https://www.kaggle.com/aaronyin/oneshotpokemon,
2018. 1, 2, 4

6


